Sensor Development Kit

Ultra-Low Power Sensor Module with Printed Sensor

The small form-factor, ultra-low power sensor module (ULPSM) produces a linear voltage output proportional to gas concentration. This module combines the novel sub-millimeter thin electrochemical sensor technology from SPEC Sensors, Inc. with an ultra-low power analog potentiostat circuit.

Printed Sensor Features:

- Sub-millimeter thin electrochemical sensor technology
- Low-cost and high-performance
- Available for a variety of target gases.
- Additional sensors and configurations may be available, please contact us to discuss your application.

ULPSM Features:

- Ultra-low power consumption
- Small form-factor gas sensor and analog front end
- Low-cost and easily replaceable
- Standard 8-pin connector for easy integration
- On-board temperature sensor
- Sensor headers allow replacement of the sensor

Evaluation Board Features:

- Plug header that replicates the suggested layout for user-implemented solutions.
- Screw terminals for easy connection to external circuits and measurement equipment.
- Jumper-selectable power supply options:
 - CR2032 coin battery (included).
 - External Supply: unregulated and unfused do not exceed 3.3 V input.
 - External Supply: 3.0 V regulated do not exceed 18 V input.
- Unity gain buffers for Vref and Vtemp.
- Insulating rubber feet.

Target Gas	Max Range
Carbon Monoxide – CO	1000 ppm
Hydrogen Sulfide – H2S	50 ppm
Nitrogen Dioxide – NO2	20 ppm
Ozone – O3	20 ppm
Sulfur Dioxide – SO2	20 ppm
Ethanol – CH6O	1000 ppm

*All dimensions in inches

ULPSM Device Connection:

Electrical connections to the ULPSM are made via a rectangular female socket connector (Sullins Connector Solutions P/N: PPPC041LGBN-RC; recommended mate for host board: P/N: PBC08SBAN). This connector also provides mechanical rigidity on one end of the board. A through-hole or threaded standoff (Option -C) is located on the opposite end of the board to provide additional mechanical connection.

Pin#	ULPSM Function
1	Vgas
2	Vref*
3	Vtemp
4	(SDA)*
5	(SCL)*
6	GND
7	(Vreg)*
8	V+

*Optional

Vgas: The voltage signal output that is proportional to the target gas concentration throughout the specified range. See **Calculating Gas Concentration** for more details.

Vref: The voltage signal output that may be used as a measurement reference for Vgas. The difference, Vgas - Vref, is independent of the input voltage, V+. See Calculating Gas Concentration for more details.

Vtemp: Voltage signal output that is proportional to temperature. See **Calculating Temperature** for more details.

SDA: Optional EEPROM I2C data line.

SCL: Optional EEPROM I2C clock line.

GND: Universal ground for power and signal.

Vreg: Optional voltage regulator output voltage. When the option is not included, Vreg = V+.

V+: Input voltage.

NOTE: *Vref* and *Vtemp* are high-impedance outputs. A unity gain buffer should be implemented between these pins and any measurement device, including voltmeters and analog-to-digital converters. The Evaluation Board includes unity gain buffers for these outputs.

Calibrated Gas Sensors:

All gas sensors are tested and calibrated at the SPEC Sensors factory. Sensors include a label with an alpha-numeric code and a two-dimensional bar code. The codes include the information indicated in the table below.

SPEC	Unique Serial Number	Sensor Part Number	Target Gas	Date Code (YYMM)	Sensitivity Code (nA/ppm)
Alpha-Numeric Code:		110201	СО	1501	5.57
2D Code:	010715010101	110201	СО	1501	5.57

Calculating Gas Concentration:

Sensors that pair with the ULPSM are calibrated at SPEC Sensors. The target gas concentration is calculated by the following method:

$$Cx = \frac{1}{M} \cdot (Vgas - Vref - Voffset),$$

where Cx is the gas concentration (ppm), Vgas is the voltage output gas signal (V), Vref is the voltage output reference signal (V), Voffset is a voltage offset factor, and M is the sensor calibration factor (V/ppm). The value, M, is calculated by the following method:

$$\mathit{M}\left(^{V}/_{ppm}\right) = \mathit{Sensitivity}\;\mathit{Code}\; \left(^{nA}/_{ppm}\right) \times \mathit{TIA}\;\mathit{Gain}\left(^{kV}/_{A}\right) \times 10^{-9}\left(^{A}/_{nA}\right) \times 10^{3}\left(^{V}/_{kV}\right),$$

Where the *Sensitivity Code* is provided on the sensor label and the *TIA Gain* is the gain of the transimpedance amplifier (TIA) stage of the ULPSM circuit. Standard gain configurations are listed in the table to the right.

Measuring *Vref* in-situ compensates for variations in battery or supply voltage, minimizing these effects on *Cx*. A difference amplifier or instrumentation amplifier can be used to subtract *Vref* from *Vgas*. Alternatively, when measuring *Vref* directly, always use a unity gain buffer. In lieu of measuring *Vref*, the nominal value may be utilized.

Target	TIA Gain	
Gas	(kV/A)	
СО	100	
H2S	49.9	
NO2	499	
SO2	100	
03	499	
CH6O	249	

Once the sensor has been powered-on and allowed to stabilize in a clean-air environment (free of the analyte gas), the value of *Vgas* is nominally equal to *Vref*. The factor, *Voffset*, accounts for a small voltage offset that is caused by a normal sensor background current and circuit background voltage. For most applications, *Voffset* = 0 is an adequate approximation. To achieve higher-precision measurements, *Voffset* must be quantified in a clean-air environment with the circuit in its final configuration.

Calculating Temperature Compensated Gas Concentration:

A first-order temperature compensation may be implemented using the following method:

$$Cxc = \frac{1}{Mc} \cdot (Vgas - Vref - Voffset),$$

$$Mc = M \cdot (1 + Tc \cdot (T - 20)),$$

where Cxc is the temperature compensated gas concentration (ppm), Mc is the temperature compensated sensor calibration factor, M is the sensor calibration factor, Tc is the temperature coefficient of span, and T is the measured temperature (°C). Tc correction factors are supplied with the SDK System Datasheet in the USB drive or can be calculated from curves provided on the particular sensor datasheet.

Calculating Temperature:

Temperature (°C) may be calculated to ±3 °C, within the range -10 °C to 50 °C, by using the theoretical relationship:

$$T = \left(\frac{87.0}{V^+}\right) \cdot Vtemp - 18.0.$$