

Carbon Monoxide Sensor

p-type Metal Oxide

This sensor works well in ambient conditions and also in extreme temperatures and humidities where electrochemical sensors cannot survive. This metal oxide gas sensor is equipped with a filter that allows CO selectivity.

Unlike common n-type sensors, this p-type sensor has a large dynamic range, repeatable response, low humidity response and resistance increases in the presence of CO.

The change in resistance can be converted to an output voltage via a simple electrical circuit. Although the sensor can be used in constant temperature/ voltage mode, best response is achieved when the sensor is cycled between 400°C (sensing temperature) and 525°C (reset temperature). See our Application Note.

PERFORMANCE

pecification

Range	ppm CO limit of performance warranty	5 to 500
Sensor resistance (R _o)	kΩ (50%rh, 23 (± 2)°C)	220 ±50
Sensor resistance ratio (R _g /R _o x 100%)	% CO @ 20ppm in air	120 ±15
Gas response relationship $(R_a/R_o - 1 = k.Conc)$	5 - 50ppm	0.01 ±10%
Gas response relationship $(R_g/R_o - 1 = k.Conc^{0.5})$		0.08 ±15%
, , , , , , , , , , , , , , , , , , ,		
Heater resistance (R _H @ RT)	Ω (23 \pm 1°C)	10 ±1.5
Heater resistance (R _H @ sensing temp.)	Ω (400 \pm 10°C)	22 ±3
Heater resistance (R _H @ reset temp.)	Ω (525 ±10°C)	26 ±3
Heater power consumption (mW) typical for 5:1	$V_{H} = 2.7 \pm 0.2 V (400^{\circ}C)$	340 ±30
	3.7 ±0.3V (525°C)	530 ±50
Operating Temperature Range	°C	-20 to 120

CROSS SENSITIVITY

H ₂ sensitivity	% measured gas @ 100 ppm H ₂	TBA
EtOH sensitivity	% measured gas @ 50 ppm EtOH	TBA
C ₃ H ₈ sensitivity	% measured gas @ 500 ppm C ₃ H ₈	TBA
NH ₃ sensitivity	% measured gas @ 25 ppm NH ₃	TBA

Figure 1 Response at low concentrations

Response from 8-48ppm CO, operating in 2-temperature mode with a 5:1 cycle ratio of sensing (400°C) and resetting (525°C).

iSweek www.isweek.com

pecification

chnica

Carbon Monoxide Sensor

p-type Metal Oxide

Performance Data

Figure 2 Real-time response at high CO concentrations

Real-time response data over range 100 - 500ppm CO in 50% rh air. Sensor operating in 2-temperature mode, pulsing between 5 mins at 400°C for 5 mins and 525°C for 1 min.

Figure 3 Response from 10 to 500ppm CO

Response over range of 8 - 500ppm CO operating in 2-temperature mode with a 5:1 cycle ratio of sensing (400°C) and resetting (525°C). Note linear behaviour <50ppm and power law behaviour >50ppm.

Figure 4 Response from 10% to 90% rh at 23°C

Response over range of 10% - 90% rh air, operating in 2-temperature mode with a 5:1 cycle ratio of sensing (400°C) and resetting (525°C)

iSweek www.isweek.com