

VOC Sensor

p-type Metal Oxide

This sensor is a broadband total VOC detector. When the cost of a PID is not justifiable, this sensor will detect VOCs with 10-50 ppb limit of detection, depending on the VOC.

Unlike common n-type sensors, this metal oxide sensor has a large dynamic range, repeatable response, low humidity response and resistance increases in the presence of most VOCs.

The change in resistance can be converted to an output voltage via a simple electrical circuit. Although the sensor can be used in constant temperature/ voltage mode, best response is achieved when the sensor is cycled between 400°C (sensing temperature) and 525°C (reset temperature). See our Application Note.

PERFORMANCE

Specification

chnical

Range	ppm isobutylene limit of performance warranty	1 to 100
Sensor resistance (R _o)	$k\Omega$ (50% rh, 23 ± 2°C)	220 ±45
Sensor resistance ratio (R _g /R _g x 100%)	%; Isobutylene @ 10ppm in air	285 ±30

Gas response relationship $(R_a/R_a - 1 = \Sigma k_i x Conc^n)$	0.5 +/- 10% (k for isobutylene)
where $k_i = \text{constant for gas i, n} = 1 \text{ or } 0.5$	0.5 (n for isobutylene)

Heater resistance (R _H @ RT)	Ω (23 ±1°C)	10 ±1.5
Heater resistance (R _H @ sensing temp.)	Ω (400 ±10°C)	22 ±3
Heater resistance (R _H @ reset temp.)	Ω (525 ±10°C)	26 ±3
Heater power consumption (mW) typical for 5:1	$V_{H} = 2.7 \pm 0.2 V (400 ^{\circ}C)$	340 ±30
	3.7 ±0.3V (525°C)	530 ±50
Operating Temperature Range	°C	-20 to 120

SENSITIVITY TO OTHER GASES

EtOH response	% measured gas @ 10 ppm EtOH	TBA
C ₃ H ₈ response	% measured gas @ 500 ppm C ₃ H ₈	TBA

Figure 1 Response from 0 to 20ppm Isobutylene

Real time response at 20,10 and 5 ppm Isobutylene in 50% rh. Sensor operating in 2-temperature mode, pulsing between 400°C for 5 mins and 525°C for 1 min.

iSweek www.isweek.com

VOC Sensor

p-type Metal Oxide

Performance Data

Figure 2 Response from 0 to 100ppm Ethanol

Real time response to 100, 50 and 25 ppm Ethanol in 50% rh.

Sensor operating in 2-temperature mode, pulsing between 400°C for 5 mins and 525°C for 1 min.

Figure 3 Response from 0 to 500ppb Benzene

Real time response to 500, 250 and 100ppb Benzene in 50% rh. Sensor operating in 2-temperature mode, pulsing between 400°C for 5 mins and 525°C for 1 min.

Figure 4 Response from 10% to 90% rh at 23°C

Response over a range of 10% - 90% rh air, operating in 2-temperature mode with a 5:1 cycle ratio of sensing (400°C) and resetting (525°C)

ISweek www.isweek.com

Specification

echnical