-30 to 55 80 to 120 47 to 100 5 to 95 6 20.0 17.4 < 16 ## **O2-A2 Oxygen Sensor** Dimensions are in millimetres (± 0.15 mm). | Performance | Output Response time Zero current Linearity | μA @ 20.9% O_2 t90 (s) from 20.9% to 0% O_2 μA in N_2 % O_2 deviation @ 10% O_2 | 80 to 120
< 15
< 2.5
0.6 | |---------------|---|---|-----------------------------------| | Lifetime | Output drift
Operating life | % change in output @ 3 months
Months until 85% original output in 20.9% O ₂ | < 1
> 24 | | Environmental | Humidity sensitivity CO ₂ sensitivity Pressure sensitivity | % O_2 change: 0% to 95% rh @ 40°C % (change O_2 reading)/% CO_2 @ 5% CO_2 (% change of output)/(% change of pressure) @ 20kPa | < 0.7
0.1
< 0.1 | °C ## iSweek www.isweek.com **Key Specifications** Temperature range Pressure range Humidity range Storage period Load resistor Diameter Height Weight Ω (recommended) mm (including label) mm (including foam ring) % rh non-condensing (0 to 99% rh short term) Months @ 3 to 20°C (store in sealed pot, open circuit) Figure 1 Output Temperature Dependence Figure 1 shows the variation in sensitivity caused by changes in temperature. Temperature dependence is very repeatable. Figure 2 Sensitivity at 50°C This plot of the mean and ±95% confidence intervals for 34 batches shows superior repeatability of the sensitivity dependence from batch to batch, giving confidence when setting temperature compensation in your gas detector. Figure 3 Thermal Transient Performance Sensors were thermally shocked from 20°C to -30°C. Consistent manufacture and good design ensure that there are no thermal spikes which can cause an alarm.