

-30 to 55

80 to 120

47 to 100

5 to 95

6

20.0

17.4

< 16

O2-A2 Oxygen Sensor

Dimensions are in millimetres (± 0.15 mm).

Performance	Output Response time Zero current Linearity	μA @ 20.9% O_2 t90 (s) from 20.9% to 0% O_2 μA in N_2 % O_2 deviation @ 10% O_2	80 to 120 < 15 < 2.5 0.6
Lifetime	Output drift Operating life	% change in output @ 3 months Months until 85% original output in 20.9% O ₂	< 1 > 24
Environmental	Humidity sensitivity CO ₂ sensitivity Pressure sensitivity	% O_2 change: 0% to 95% rh @ 40°C % (change O_2 reading)/% CO_2 @ 5% CO_2 (% change of output)/(% change of pressure) @ 20kPa	< 0.7 0.1 < 0.1

°C

iSweek www.isweek.com

Key Specifications

Temperature range

Pressure range Humidity range

Storage period

Load resistor

Diameter

Height

Weight

 Ω (recommended)

mm (including label)

mm (including foam ring)

% rh non-condensing (0 to 99% rh short term)

Months @ 3 to 20°C (store in sealed pot, open circuit)

Figure 1 Output Temperature Dependence

Figure 1 shows the variation in sensitivity caused by changes in temperature. Temperature dependence is very repeatable.

Figure 2 Sensitivity at 50°C

This plot of the mean and ±95% confidence intervals for 34 batches shows superior repeatability of the sensitivity dependence from batch to batch, giving confidence when setting temperature compensation in your gas detector.

Figure 3 Thermal Transient Performance

Sensors were thermally shocked from 20°C to -30°C. Consistent manufacture and good design ensure that there are no thermal spikes which can cause an alarm.